Through the influence of a rise in Follicle stimulating hormone (FSH), five to seven tertiary-stage ovarian follicles are recruited for entry into the menstrual cycle. These follicles, that have been growing for the better part of a year in a process known as folliculogenesis, compete with each other for dominance. In a signal cascade kicked off by luteinizing hormone (LH), the follicles secrete estradiol, a steroid that acts to inhibit pituitary secretion of FSH. With diminished FSH supply comes a slowing in growth that eventually leads to follicle death, known as atresia. The largest follicle secretes inhibin that serves as a finishing blow to less competent follicles by further suppressing FSH. This dominant follicle continues growing, forms a bulge near the surface of the ovary, and soon becomes competent to ovulate.
The follicles also secrete estrogens (of which estradiol is a member). Estrogens initiate the formation of a new layer of endometrium in the uterus, histologically identified as the proliferative endometrium. If fertilised, the embryo will implant itself within this hospitable flesh.